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Abstract—XGBoost is one of the most versatile, accurate        

and popular algorithms at the moment. ARIMA       
(AutoRegressive Integrated Moving Average) however, is a less        
well-known, more specialised algorithm that is designed to        
work specifically with time-series data. Professional golf events        
produce a unique format of time-series data in the form of the            
results of the event. The aim of the project is to compare how             
the two algorithms perform on the golf data set. Initial results           
show a promising superior performance for ARIMA; in terms         
of MSE, R2 and Kendall’s Tau metrics. 

Keywords—ARIMA, XGBoost, time-series, golf, machine     
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I. INTRODUCTION 

Time series analysis is a well studied and applied         
method in data science. Application domains are for        
example the forecasting of sales, the weather, and sports         
results. In time series analysis past data is used to make           
predictions on future values. This is straightforward for        
individual time series but can also be applied to multiple          
time series by combining all data to train one model [1].           
Reasons for this could be a lack of data on some of the             
series which makes training individual models impossible.       
Also, when it is expected that all series have similar          
relations to past observations and can be predicted using a          
single model, fitting one model could save on computational         
cost and time. Application in our named examples could be          
several products, or multiple sports players. The latter will         
be used for the current study. Several algorithms can be          
applied for this purpose. In this study we will compare two           
of them. The autoregressive integrated moving average       
(ARIMA) and the XGBoost algorithm. 

A previous work by Kane et al.[2] already carried out a           
comparison between the two methods on influenza data. The         
results of the investigation form the basis of the research          
question and hypotheses to be examined in this paper where          
we will test how these models perform on sports analytics,          
specifically golf results forecasting of multiple time series.        
The following research question will be investigated: 

“In analyzing multiple time series how does ARIMA        
perform compared to a random-forest model for the        
complete dataset; in terms of MSE, R^2 and Kendall tau          
metrics?” 

With the following corresponding hypothesis: 

 

H1: The Predictive ability of the ARIMA algorithm will         
be better than the performance of the Random Forest         
algorithm; in terms of MSE and R^2 and Kendall tau          
metrics. 
 

II. METHOD 

A. Algorithms 
The two compared algorithms (ARIMA and XGBoost)       

will be explained here.  

The ARIMA model is an update of the ARMA model          
first introduced by Peter Whittle [3] and later popularized by          
George E. P. Box and Gwilym Jenkin [4]. The model          
consists of two parts: Autoregression and a moving average.         
The i stands for integrated and takes care of the          
non-stationarity data. The model has 3 parameters: p, d, and          
q. P is the number of past values considered in the model, q             
is the number of past values considered in the moving          
average and d is the number of times the data are           
differenced to overcome non-stationarity. By differencing      
the data a past value is subtracted from the current value.           
For the golf data, this is applied once with a lag of 1,             
meaning that of each value the last past value is subtracted.           
However, if there are seasonal trends in the data this lag           
could be adjusted to this. The dependent variable will be the           
position and the independent variables will the lagged        
positions, the moving average and the golferID to correct for          
individual differences. The algorithm is trained for different        
value combinations for parameters p and q ranged between 5          
and 11, the results are compared to find the best fit.  

XGBoost stands for extreme gradient boosting and can        
be described as a scalable implementation of gradient        
boosting machines with the focus on improving the model         
performance and execution speed. It was developed by        
Tianqi Chen [5] and can be used by an open source library,            
accessible with popular programming languages like python       
R or Julia. In past machine learning challenges, like the          
Kaggle competition, for example, it was a widespread tool         
among all winning solutions. It is a highly flexible and          
versatile tool that can work through most regression,        
classification, and ranking problems.  

The basic concept is boosting, which is an ensemble         
method that aims to create a strong classifier based on weak           

 



classifiers. It’s an iterative process where the weight of each          
learner is learned by whether it predicts a sample correctly          
or not. If a learner is mispredicting a sample, the weight of            
the learner is reduced. The process is repeated until         
converge. To be more precise the boosting of the XGBoost          
is a gradient boosting. XGBoost can be used in combination          
with different learning algorithms (T. Chen, C. Guestrin,        
2016). 

In this work a Random Forest Algorithm with XGBoost         
is used and implemented in R with the R-Package xgboost.          
In addition to the standard parameter settings of the         
so-called general and booster Parameters, certain learning       
task parameters settings were tested in the model building         
phase. 

B. The Data 
The basis of the investigation is time series golf data.          

The dataset consists of around 30.000 records of over 2000          
golfers and was scraped from several golf sport websites         
that report on the weekly results. Each record contains the          
following independent variables: GolferID, Position, Week.      
These variables are used to predict the position of a golfer in            
a specific tournament as target variable. For the ARIMA         
algorithm the data was transformed in a way that dummy          
variables consisting of p past values for that specific         
player/entity and a moving average over q past values.         
Figure 1 is a screenshot of a table with golfers results taken            
from owgr.com, this is where the majority of the scraped          
data comes from. 

The histogram in figure 2 shows the number of         
competitions per golfer, as you can see the majority of          
golfers in our database have only played a few tournaments.          
We think this is to be expected as only the best golfers tend             
to play frequently in high level tournaments. We suspect that          
a lot of golfers in the first bar will be ranked below 500th in              
the world. Thus the golfers most likely to win are also the            
ones we will probably have the most data for so this           
shouldn’t be such a problem. To avoid many missing data          
points the data is filtered such that only golf players with           
data in more than 50% of the weeks will remain in the            
dataset.  

The position is the target variable with a range 1 to 240            
in the data. Due to the nature of the time series data position             
is also an explanatory variable, as the previous positions will          
be used to predict future positions. Ranking points is also an           
explanatory variable - players earn ranking points based on         
where they finish in events and how strong the field is that            
competed in the event. With a maximum of 100 points for a            
1st place finish in a Major and a minimum of 24 points for a              
first place finish on any European or PGA Tour event. 

 
Fig. 1. Example of a table we would scrape, found on owgr.com. 

 
Fig. 2. Histogram of number of competitions per golfer. 

C. Imputation 
Golfers that are in the bottom half of the event after two 
rounds are said to have ‘missed the cut’ (MC) and therefore 
do not complete the event. As such their position is shown 
as ‘MC’, instead of the actual position. The scraping code 
therefore takes the golfer’s index in the table as their 
position as all the tables are sorted on position by 
default.data comes from.omes from. 

Further missing values are caused by golfers not        
competing every week. To reduce the number of missing         
values golfers that haven't competed in at least half of the           
events are removed from the data set. Secondly, remaining         
missing values are replaced with the average of the nearest          
available values, taking their distance into account. i.e. if         
week 2 and week 3 are missing for a golfer then week 2’s             
imputed value will be: 

 week 1 position  week 4 position 3
2 +  3

1  
whilst week 3’s value will be: 

 week 1 position  week 4 position 3
1 +  3

2  

D. Data preparation 
To make the data usable for our implementation of both          

some additional data preparation needed to be done. First,         
the variables ‘Rankingpoints’ and ‘Odds’ were dropped as        
they would not be used in the model due to insufficient data            
points. Second, the ‘Position’ variable had to be transformed         
into a numeric type variable. To make it possible to plot           
individual golfer’s positions the data was transformed into a         
pivot table with each column representing a golfer, the week          
number as the index, and the positions as the row values. 

E. Data preparation Arimat 
For the ARIMA Model additional data preparation was        

necessary. Depending on parameter p, dummy variables are        
created for p past positions. Also, depending on parameter q,          
a dummy variable for the moving average over q past values           
is created. Last, to make the data more stationary, the data is            
differenced. Depending on parameter d, this will create        
missing values for the d first observations, these rows will          
be dropped from the dataset. 

F. Performance metrics  
Results of both models will be compared according to         

the following performance metrics: mean squared error       
(MSE), R2, and Kendall correlation. The MSE will give an          
indication of the accuracy of the predictions and will allow          
us to compare the models regarding this. The R2 tells us           



what proportion of the variance in the data is explained by           
the model, this metric will allow us to compare models          
regarding how well the model fits the data. Another         
performance metrics is the Kendall correlation, which is a         
proper correlation measure for ordinally scaled values. With        
the correlation between the predicted and the actual position         
of a golfer, we can evaluate the model in an additional way.            
The Kendall correlation between two variables is high when         
observations have a similar rank and low when observations         
have a dissimilar rank. The highest possible value is 1 for           
identical ranks and the lowest is -1 for completely different          
ranks. [6] A high positive correlation value is sought for the           
objective of this work. 

 

III. RESULTS 

This section will describe the results of different runs of          
both the ARIMA and XGBoost model. Figure 3 shows the          
position of randomly selected golf players over time. This         
figure gives an indication how the data behaves.  

 
Fig. 3.     the position of three randomly selected golf players(GolferID 
= 5413, 9553, and 5316) showing the behavior over time. 

A. ARIMA 
The model was fitted for two datasets, one without         

imputation and one with mean imputation for missing        
weeks. The ARIMA(p,d,q) model was fitted and evaluated        
for different parameter values for p and q ranging from 5 to            
11. The data was differenced once (d = 1) with a lag of 1              
week. Figure 4 show the performance of the model on both           
datasets measured in MSE, R2, and Kendall’s Tau (For         
larger plots see appendix A). For both models patterns can          
be seen in the performance of the model with different          
parameter values. The general performance improves as       
parameter values increase. 

The final model on the not-imputed data was chosen to          
be ARiMA(9,1,9). For the imputed data the chosen final         
model was ARiMA(11,1,9). Table I shows the performance         
metrics on the chosen models on both datasets. The table          
shows that the MSE is lower for the imputed data and the R2             
and Kendall’s Tau are higher for the imputed data. 

 

 

 

Without Imputation With imputation 

   

   

   

Fig. 4. Performance metrics of the ARIMA(p,d,q) model with different        
parameter values of p and q. top to bottom: MSE, R2, and Kendall’s Tau.              
Fitted to both the imputed and not-imputed data. 

TABLE. I PERFORMANCE METRICS ON THE ARIMA MODEL  

Metrics ARiMA(9,1,9) 
Without Imputation 

ARiMA(11,1,9) 
With Imputation 

MSE 1602.43 1013.62 

R2 -0.001 0.265 

Kendall cor. 0.1687 0.388 

 

B. Random Forest XGBoost  
As the ARIMA Model the Random Forest XGBoost        

Model was also fitted for the two datasets with and without           
imputation for missing weeks. Comparing all chosen metrics        
(see Table II) for both models with the same model          
parameters one can clearly see that the imputation of the          
input data improves the performance of the model.  

After deciding for choosing the dataset with imputation        
the second step was to optimize the performance of the          
model. The strongest influence on the performance in the         
case of this work is the maximum tree depth (max depth).           
Therefore the model was trained with the following five         
different max depth settings (5, 7, 10, 12 or 15). Results can            
be seen in Table III. 

 

 

 

 

 



TABLE II:COMPARISON OF THE PERFORMANCE WITH AND WITHOUT IMPUTATION 
Metrics Without Imputation With Imputation 

MSE 1781.87 1309.51 

R2 0.054 0.158 

Kendall 
cor. 

0.158 0.279 

 
TABLE III: COMPARISON OF THE PERFORMANCE WITH DIFFERENT MAX DEPTH 

SETTINGS 

Perform
ance 

Metrics 

Max 
depth: 5 

Max 
depth: 7 

Max 
depth: 10 

Max 
depth: 12 

Max 
depth: 15 

MSE 1266.15 1278.17 1309.51 1315.11 1293.49 

r2 0.179 0.174 0.158 0.155 0.166 

Kendall 
cor. 

0.297 0.294 0.279 0.272 0.282 

 

As one can see in the table above the model performs best            
with a max depth of five in all three performance metrics.           
For a deeper evaluation of the predictive ability of the model           
with the best parameter setting the following plot is helpful.  

 

 

Fig. 5. comparison of predicted and actual values with the regression line: 

 
The Plot in Fig. 5 shows a scatterplot with a comparison           

of the predicted and actual values which can be used to           
uncover the strengths and weaknesses of the model. Even if          
there are many clear false predictions there is a recognizable          
pattern. The regression line can be seen as a visualization of           
the correlation of both variables. When looking at this line, a           
trend can be seen that shows that the model is not           
completely wrong. One obvious weakness of the model is         
the ability to predict low rankings. It only predicts two          
players to finish in the Top 20 with a lowest predicted           
ranking of 18.  

With the results above the hypothesis, that the predictive         
ability of the ARiMA will be better than the performance of           
the Random Forest algorithm in terms of MSE and R^2 and           
Kendall tau can be confirmed.  
 

IV. DISCUSSION 

Both the ARIMA as the XGBoost model resulted in         
predictions with a large error and a weak fit. This indicates a            
lack of a strong linear relation between past positions and          
future positions. Though this is to be expected due to the           
innately unpredictable nature of golfer’s performances.      
Imputation improved the models fit and gave better results         
on the test data. Confirming our hypothesis, the ARIMA         
model performs better on both datasets compared to the         
XGBoost algorithm on all metrics except the R2 on the          
not-imputed data. Which is surprising. It would be expected         
that the boosted algorithm, which also allows for non-linear         
patterns would outperform the ARIMA which is based on a          
linear regression. 

We compared the results of our data to that of a dataset            
known to be successful with time series analysis. This         
dataset contains data of the sales of multiple products over          
several weeks. The results of the ARIMA are: MSE = 13.1;           
R2 = 0.91; and Kendall’s Tau = 0.80. For the XGBoost the            
results are: MSE = 3.5; R2 = 0.93; and Kendall’s Tau = 0.68.             
On this data the model performs reasonably better, which         
helps verify the accuracy of our model and further shows the           
underlying unpredictability on the golf data set. Whilst        
predicting the performance of any single golfer is innately         
unpredictable, the model still has strong predictive power        
from the perspective of events as a whole. Thus we have           
confidence in the models potential for application in the real          
world of sports betting. 

A. Limitations 
One of the limitations of the data being presented as a           

time series i.e. week by week is the number of missing           
values this produces. With there being at most two events          
per week on the two high profile tours (PGA and European)           
with an average of 150 players per event and over 2000           
Golfers in our data set. 

Another limitation was the fact that the available        
ARiMA statsmodel library cannot be applied to multiple        
time series data. We therefore had to work around to          
implement our own bespoke version. 

B. Effect of the Imputation 
By imputing the missing weeks with the mean of the          

positions from the nearest weeks either side, we of course          
created a pattern more linear than in reality. This is likely           
the reason the model performance increased after       
imputation. Due to overfitting the accuracy of the model on          
new instances might not have improved as much as our          
current test results indicate. 
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APPENDIX A: ARIMA METRICS PLOTS 
 
Without imputation: 
 

 

 

 
  



 
 
 
With imputation: 

 

 

 
 

 

 


